Quantifying the GHG Benefits of Compost: Sampling Results in CA

Sally Brown
University of Washington
Matt Cotton, Integrated Waste
Management Consulting, LLC

Organics Diversion

Goal of sampling-Project Design

- Identify composters within the Study Regions
- Identify associated growers with history of compost use
- Sample fields with and without compost applications
- Conduct lab analyses of Soil Samples

Sample Locations - Southern Bay Area

Sample Locations- Southern Central Valley

Sample Locations- Greater Los Angeles

Soil sampling

- Compost amended/control
 - 2-3 complete sets of samples per site per treatment
 - Composite of 4+ cores for chemical analysis
 - Water infiltration 2 runs per sample site
 - Bulk density, intact core

Control soils

- Soils were collected from directly under trees (treated) and from work rows (control)(6 sites)
- In some cases treated and control were collected from under trees/ cropped areas (3 sites)
- In case where control was different soil series, excluded from statistical analysis (1 site)

Soil variability

Map Scale: 1:27,300 if printed on A size (8.5" x 11") sheet.

0	350	700	1,400	Meters 2.100	
_		-			Feet
0	1,500	3,000		6,000	9,000

Soil Control Labs-Soil Analysis

- Organic carbon
- Microbial Activity
 - (CO₂ on incubated soils)
- Water Holding Capacity
 - (at 1 barr pressure)

Data analysis

- SPSS used for statistical analysis
- Ratio variable developed to normalize results across different sites
 - Response in treated relative to control
- Significance used p > 0.05
- Sites with control in same soil series used for analysis

Change as a function of rate

- Tendency for greater impact at higher application rate
 - May be complicated by nature of sampling and distribution of sites
- Problems with rate x time
 - Some farmers have been applying low rates for a long time
 - Others high rates shorter time
 - Not precise quantities

Organic carbon- effect of rate

Organic carbon-Site variability

Function of sampling

- 0-15, 15-30 cm depths
- Surface applied compost
 - 0-7.5, 7.5-15
- Additional replication desirable
- Cross farm variability

Microbial respiration- effect of rate

Total compost applied (dry tons per acre)

Bulk density- clearer trend

Total compost applied (dry tons per acre)

Water holding capacity- effect of rate

Total compost applied (dry tons per acre)

Carbon, water related- texture likely a factor

Across all sites (compost) Variables related to increased carbon

Across all sites (compost) Water infiltration

Total Nitrogen

Available Phosphorus

Specific sites- used to provide quantitative difference

Organic orchard- fine sand soil 200 t/a over 10 year period Riverside, CA

	Total N	Organic Carbon	Bulk Density	H ₂ O per 100g	Infiltration rate
		%		mls	minutes
Control	0.04+- 0.007	0.37+- 0.1	1.5+- 0.2	9.6+- 0.6	3.3+- 0.3
Compost	0.28+- 0.04	2.7+- 0.4	1.1 +- 0.1	21.3+- 3.7	4.1+- 0.9
% change	700	730	-27%	225	24% longer

Organic row crops- fine sandy loam 45 t/a 5+ years period Monterey

	Total N	Organic Carbon	Bulk Density	H ₂ O per 100g	Infiltration rate
	%		g cm ³	mls	minutes
Control	0.08	0.7+- 0.02	1.7+- 0.1	25+- 0.08	18+- 17
Compost	0.1+- 0.002	1.1+- 0.05	1.3+- 0.08	29+- 0.6	0.67+- 0.1
% change	125	157	-24%	116	4% as long

Orchard crop- loam 125 t/a single mulch application period Ventura

	Total N	Organic Carbon	Bulk Density	H ₂ O per 100g	Infiltration rate
	%		g cm ³	mls	minutes
Control	0.2 +- 0.07	2 3+- 0.9	1.3+- 0.1	32+- 2.5	24+- 2.9
Mulch	0.2+- 0.04	2.1+- 0.6	1.1+- 0.4	38+- 1	0.9+- 0.6
% change	no change	-9%	-15%	119%	4% as long

University of New South Wales Recycled Organics Unit

(http://www.recycledorganics.com/publications/reports/)

- Modeled compost use as mulch for vineyards or soil conditioner for cotton
- Used existing literature as a basis for deriving benefits associated with compost use
- Used results as basis for comparison to our results

Carbon/ Water efficiency

	ROU	CA tilled	CA- surface	CA- mulch	Recommended Default
Organic carbon	256	291	382	0	256 kg CO ₂ for tilled sites, 300-325 for no till or orchard sites
Water efficiency (% increase)	0.125	1.1	0.5	0.44	0.125

Fertilizer/Soil Structure

	ROU	CA tilled	CA- surface	CA- mulch	Recommended Default
		per dry Mg co	mpost (unless o	therwise specifi	(ed)
Fertilizer (kg CO ₂ eq)	11.8-31.3		56	0	56- based on NPK of 9, 9.5 and 10 kg per Mg Use specific compost analysis when possible
•	2% decrease per 12 Mg compost for incorporated	2.9% decrease per	0.7% decrease per 12 Mg	0.7% decrease per 12 Mg	2% per 12 Mg incorporated, 0.5% per 12 Mg for surface application

Soil Tilth

CA- mulch **ROU CA tilled** CA-surface **Recommended Default** per dry Mg compost (unless otherwise specified) Overall 33% 146% increase in Soil Tilth-164% increase in CO_2 using carbon degradation increase in CO_2 emissions/ Value set by ROU/2 of soils has a CO_2 and emissions/ overall Conservative default **cost of \$4484** microbial emissions/ no **\$2000 per ha** increase in increase in activity as per ha increase in carbon from carbon from indicators soil carbon 0.7 to 1.1% 0.7% to 1.27%

Soil Erosion

Erosion	1.2% reduction in tilled crops, complete reduction for mulch applications	Infiltration rate 4% as long as control	Infiltration rate 24% longer than controlresults specific to this site	Infiltration rate 4% as long as control	Recommended Default We saw an overall average decrease in water infiltration rate of 33% across all sites that received compost or mulch. This can be used as an indicator of reduced erosion potential. Use ROU default values

Additional variables

Plant yield

1-2% yield increase per Mg compost

1-2% yield increase per Mg compost

GHG per Mg Compost used

Conclusions- GHG

- Using CCX values- one dry Mg of food waste diverted from landfill = 3 Mg
 CO_{2eq}
- Assuming 80% decomposition, each Mg of food waste = 0.1 Mg CO_{2eq}

Acknowledgements

John Beerman, California Bio-Mass	Richard Crockett, Burrtech Industries
Ken Holladay, Organic Ag., Inc.	Bill Camarillo, Agromin
Gus Gunderson, Limoneira Company	Dave Baldwin, Community Recycling and Resource Recovery
Jack Pandol, The Grapery	Eric Espinosa, Kochergan Farms
Kevin Buchnoff, Kochergan Farms	Stan Mitchell, Pacific Coast Ag.
Greg Ryan, Z-Best Composting	Don Wolf, Grover Environmental
Peter Reece, Ratto Brothers	Kim Carrier, Jepson Prairie Organics
Bob Shaffer, Ag. Consultant	Frank Shields, Soil Control Labs.